博客
关于我
机器学习之机器学习系统测试
阅读量:183 次
发布时间:2019-02-28

本文共 678 字,大约阅读时间需要 2 分钟。

#Prioritizing what to work on:Spam classification example

在实际工作中,我们需要确定优先处理哪些任务。对于垃圾邮件分类这一经典问题,我们可以从以下几个方面入手:

首先,需要明确如何表示邮件的特征向量x。这可以通过将每个单词是否出现(1或0)表示为布尔值来实现,从而构建一个二维的特征向量。

接下来,如何在有限时间内提升垃圾邮件分类器的性能?关键在于以下几个方面:

  • 数据收集:通过构建“honeypot”邮件地址,吸引垃圾邮件发送者,将这些数据用于训练分类算法。
  • 特征工程:引入更复杂的特征,如专家提取的关键词或邮件正文的语义分析结果。
  • 模型评估:使用交叉验证方法评估算法性能,分析学习曲线和误差,决定是否需要更多数据或优化特征。
  • 在误差分析阶段,手动检查算法失误的具体情况是关键。例如,识别出钓鱼邮件、假货邮件等常见类型,并根据错误模式调整模型。

    改进学习算法时,使用数值评估指标如交叉验证误差率和F1值等方法,能够更直观地衡量模型性能。例如,在自然语言处理中,可以采用词干提取工具(如Porter Stemmer)来优化文本特征。

    对于不对称性分类问题,建议使用精确率和召回率等度量,尤其在类别分布不均衡的情况下,需重点关注少数量类别的性能。

    在处理机器学习数据时,可以选择感知器、朴素贝叶斯等算法进行实验。同时,需验证特征是否能让模型准确预测标签,确保训练数据充足且多样化。

    总之,构建高效的垃圾邮件分类系统需要从数据收集、特征工程、算法选择到性能评估等多个层面入手,通过不断优化提升模型性能。

    转载地址:http://vpqn.baihongyu.com/

    你可能感兴趣的文章
    Node.js 的事件循环(Event Loop)详解
    查看>>
    node.js 简易聊天室
    查看>>
    Node.js 线程你理解的可能是错的
    查看>>
    Node.js 调用微信公众号 API 添加自定义菜单报错的解决方法
    查看>>
    node.js 配置首页打开页面
    查看>>
    node.js+react写的一个登录注册 demo测试
    查看>>
    Node.js中环境变量process.env详解
    查看>>
    Node.js之async_hooks
    查看>>
    Node.js升级工具n
    查看>>
    Node.js卸载超详细步骤(附图文讲解)
    查看>>
    Node.js基于Express框架搭建一个简单的注册登录Web功能
    查看>>
    Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
    查看>>
    Node.js安装及环境配置之Windows篇
    查看>>
    Node.js安装和入门 - 2行代码让你能够启动一个Server
    查看>>
    node.js安装方法
    查看>>
    Node.js官网无法正常访问时安装NodeJS的方法
    查看>>
    Node.js的循环与异步问题
    查看>>
    Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
    查看>>
    nodejs + socket.io 同时使用http 和 https
    查看>>
    NodeJS @kubernetes/client-node连接到kubernetes集群的方法
    查看>>